Unnamed Fossil Project

aes.d at tip
Login

File tiny/aes.d from the latest check-in


/*
 * This is an implementation of the AES algorithm,
 *  specifically ECB, CTR and CBC mode.
 * Block size can be chosen in aes.h - available choices are AES128,
 *  AES192, AES256.
 *
 * The implementation is verified against the test vectors in:
 *  National Institute of Standards and Technology
 *  Special Publication 800-38A 2001 ED

ECB-AES128
----------

  plain-text:
    6bc1bee22e409f96e93d7e117393172a
    ae2d8a571e03ac9c9eb76fac45af8e51
    30c81c46a35ce411e5fbc1191a0a52ef
    f69f2445df4f9b17ad2b417be66c3710

  key:
    2b7e151628aed2a6abf7158809cf4f3c

  resulting cipher
    3ad77bb40d7a3660a89ecaf32466ef97 
    f5d3d58503b9699de785895a96fdbaaf 
    43b1cd7f598ece23881b00e3ed030688 
    7b0c785e27e8ad3f8223207104725dd4 


NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0)
        You should pad the end of the string with zeros
	if this is not the case. For AES192/256 the key size is
	proportionally larger.
*/
module tiny.aes;
import std.exception : enforce;

@safe:
private:

// The number of columns comprising a state in AES.
//  This is a constant in AES. Value=4
const uint Nb = 4;

// state_t - array holding the intermediate results during decryption.
alias state_t = ubyte[4][4];

static const ubyte[256] sbox = [
  //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
  0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
  0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
  0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
  0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
  0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
  0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
  0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
  0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
  0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
  0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
  0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
  0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
  0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
  0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
  0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
  0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
  0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ];

static const ubyte[256] rsbox = [
  0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
  0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
  0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
  0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
  0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
  0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
  0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
  0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
  0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
  0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
  0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
  0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
  0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
  0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
  0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
  0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
  0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
  0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
  0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
  0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
  0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
  0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
  0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
  0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
  0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
  0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d ];

// The round constant word array, Rcon[i], contains the values given by 
// x to the power (i-1) being powers of x
//  (x is denoted as {02}) in the field GF(2^8)
static const ubyte[11] Rcon = [
  0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 ];

/*
 * Jordan Goulder points out in PR #12
 *  (https://github.com/kokke/tiny-AES-C/pull/12),
 * that you can remove most of the elements in the Rcon array,
 *  because they are unused.
 *
 * From Wikipedia's article on the Rijndael key schedule
 *  @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
 * 
 * "Only the first some of these constants are actually
 *  used -- up to rcon[10] for AES-128 (as 11 round keys are needed), 
 *  up to rcon[8] for AES-192, up to rcon[7] for AES-256.
 *  rcon[0] is not used in AES algorithm."
 */

pure ubyte
xtime(uint x)
{
    return cast(ubyte)(((x << 1) ^ (((x >> 7) & 1) * 0x1b)) & 0xFF);
}

// Xor into a destination from a src
void
XorWith(ubyte[] dest, in ubyte[] src)
{
    // The block in AES is always 128bit no matter the key size
    for (uint i = 0; i < AES_BLOCKLEN; ++i) {
	dest[i] ^= src[i];
    }
}

public:

// Block length in bytes - AES is 128b block only
const uint AES_BLOCKLEN  = 16;

class AES {
    private:

    // The number of 32 bit words in a key.
    uint Nk;

    // The number of rounds in AES Cipher.
    uint Nr;

    // Key length in bytes
    uint keylen;

    ubyte[] RoundKey;

    auto Iv = new ubyte[AES_BLOCKLEN];

    // Encoded representation of caller's buffer
    state_t state;

    // This function produces Nb(Nr+1) round keys.
    // The round keys are used in each round to decrypt the states. 
    void
    KeyExpansion(in ubyte[] Key)
    {
	uint i, j, k;
	ubyte[4] tempa; // Used for the column/row operations

	// The first round key is the key itself.
	for (i = 0; i < this.Nk; ++i) {
	    this.RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
	    this.RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
	    this.RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
	    this.RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
	}

	// All other round keys are found from the previous round keys.
	for (i = this.Nk; i < Nb * (this.Nr + 1); ++i) {
	    k = (i - 1) * 4;
	    tempa[0] = this.RoundKey[k + 0];
	    tempa[1] = this.RoundKey[k + 1];
	    tempa[2] = this.RoundKey[k + 2];
	    tempa[3] = this.RoundKey[k + 3];

	    if ((i % this.Nk) == 0) {

		// Shift the 4 bytes in a word to the left once.
		// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
		const ubyte u8tmp = tempa[0];
		tempa[0] = tempa[1];
		tempa[1] = tempa[2];
		tempa[2] = tempa[3];
		tempa[3] = u8tmp;

		// Take a four-byte input word and 
		//  apply the S-box to each of the four bytes to produce
		//  an output word.
		tempa[0] = sbox[tempa[0]];
		tempa[1] = sbox[tempa[1]];
		tempa[2] = sbox[tempa[2]];
		tempa[3] = sbox[tempa[3]];

		tempa[0] = tempa[0] ^ Rcon[i / this.Nk];
	    }

	    // Special case for 256 bit AES
	    if (this.keylen == 32) {
		if ((i % this.Nk) == 4) {
		    tempa[0] = sbox[tempa[0]];
		    tempa[1] = sbox[tempa[1]];
		    tempa[2] = sbox[tempa[2]];
		    tempa[3] = sbox[tempa[3]];
		}
	    }

	    j = i * 4; k=(i - this.Nk) * 4;
	    this.RoundKey[j + 0] = this.RoundKey[k + 0] ^ tempa[0];
	    this.RoundKey[j + 1] = this.RoundKey[k + 1] ^ tempa[1];
	    this.RoundKey[j + 2] = this.RoundKey[k + 2] ^ tempa[2];
	    this.RoundKey[j + 3] = this.RoundKey[k + 3] ^ tempa[3];
	}
    }

    // This function adds the round key to state.
    // The round key is added to the state by an XOR function.
    void
    AddRoundKey(uint round)
    {
	for (uint i = 0; i < 4; ++i) {
	    for (uint j = 0; j < 4; ++j) {
		(this.state)[i][j] ^=
		    this.RoundKey[(round * Nb * 4) + (i * Nb) + j];
	    }
	}
    }

    // The SubBytes Function Substitutes the values in the
    // state matrix with values in an S-box.
    void
    SubBytes() {
	for (uint i = 0; i < 4; ++i) {
	    for (uint j = 0; j < 4; ++j) {
		this.state[j][i] = sbox[this.state[j][i]];
	    }
	}
    }

    // The ShiftRows() function shifts the rows in the state to the left.
    // Each row is shifted with different offset.
    // Offset = Row number. So the first row is not shifted.
    void
    ShiftRows() {
	ubyte temp;

	// Rotate first row 1 columns to left  
	temp           = this.state[0][1];
	this.state[0][1] = this.state[1][1];
	this.state[1][1] = this.state[2][1];
	this.state[2][1] = this.state[3][1];
	this.state[3][1] = temp;

	// Rotate second row 2 columns to left  
	temp           = this.state[0][2];
	this.state[0][2] = this.state[2][2];
	this.state[2][2] = temp;

	temp           = this.state[1][2];
	this.state[1][2] = this.state[3][2];
	this.state[3][2] = temp;

	// Rotate third row 3 columns to left
	temp           = this.state[0][3];
	this.state[0][3] = this.state[3][3];
	this.state[3][3] = this.state[2][3];
	this.state[2][3] = this.state[1][3];
	this.state[1][3] = temp;
    }

    // MixColumns function mixes the columns of the state matrix
    void
    MixColumns() {
	ubyte Tmp, Tm, t;

	for (uint i = 0; i < 4; ++i) {  
	    t   = this.state[i][0];
	    Tmp = this.state[i][0] ^ this.state[i][1] ^
	    this.state[i][2] ^ this.state[i][3] ;
	    Tm  = this.state[i][0] ^ this.state[i][1] ; Tm = xtime(Tm);
	    this.state[i][0] ^= Tm ^ Tmp ;
	    Tm  = this.state[i][1] ^ this.state[i][2] ; Tm = xtime(Tm);
	    this.state[i][1] ^= Tm ^ Tmp ;
	    Tm  = this.state[i][2] ^ this.state[i][3] ; Tm = xtime(Tm);
	    this.state[i][2] ^= Tm ^ Tmp ;
	    Tm  = this.state[i][3] ^ t ;
	    Tm = xtime(Tm);
	    this.state[i][3] ^= Tm ^ Tmp ;
	}
    }

    // Multiply is used to multiply numbers in the field GF(2^8)
    // Note: The last call to xtime() is unneeded,
    //  but often ends up generating a smaller binary

    pure ubyte
    Multiply(ubyte x, ubyte y) {
	return
	  (  ((y & 1) * x) ^
	  (((y >> 1) & 1) * xtime(x)) ^
	  (((y >> 2) & 1) * xtime(xtime(x))) ^
	  (((y >> 3) & 1) * xtime(xtime(xtime(x)))) ^
	  (((y >> 4) & 1) *
	   xtime(xtime(xtime(xtime(x))))));
    }

    // MixColumns function mixes the columns of the state matrix.
    // The method used to multiply may be difficult to understand
    //  for the inexperienced.
    // Please use the references to gain more information.
    void
    InvMixColumns() {
	ubyte a, b, c, d;

	for (int i = 0; i < 4; ++i) { 
	    a = this.state[i][0];
	    b = this.state[i][1];
	    c = this.state[i][2];
	    d = this.state[i][3];

	    this.state[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^
		this.Multiply(c, 0x0d) ^ this.Multiply(d, 0x09);
	    this.state[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^
		this.Multiply(c, 0x0b) ^ this.Multiply(d, 0x0d);
	    this.state[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^
		this.Multiply(c, 0x0e) ^ this.Multiply(d, 0x0b);
	    this.state[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^
		this.Multiply(c, 0x09) ^ this.Multiply(d, 0x0e);
	}
    }

    // The SubBytes Function Substitutes the values in the
    // state matrix with values in an S-box.
    void
    InvSubBytes() {
	for (ubyte i = 0; i < 4; ++i) {
	    for (ubyte j = 0; j < 4; ++j) {
		this.state[j][i] = rsbox[this.state[j][i]];
	    }
	}
    }

    void
    InvShiftRows() {
	ubyte temp;

	// Rotate first row 1 columns to right  
	temp = this.state[3][1];
	this.state[3][1] = this.state[2][1];
	this.state[2][1] = this.state[1][1];
	this.state[1][1] = this.state[0][1];
	this.state[0][1] = temp;

	// Rotate second row 2 columns to right 
	temp = this.state[0][2];
	this.state[0][2] = this.state[2][2];
	this.state[2][2] = temp;

	temp = this.state[1][2];
	this.state[1][2] = this.state[3][2];
	this.state[3][2] = temp;

	// Rotate third row 3 columns to right
	temp = this.state[0][3];
	this.state[0][3] = this.state[1][3];
	this.state[1][3] = this.state[2][3];
	this.state[2][3] = this.state[3][3];
	this.state[3][3] = temp;
    }

    // Cipher is the main function that encrypts the PlainText.
    void
    Cipher() {

	// Add the First round key to the state before starting the rounds.
	this.AddRoundKey(0);

	// There will be Nr rounds.
	// The first Nr-1 rounds are identical.
	// These Nr rounds are executed in the loop below.
	// Last one without MixColumns()
	for (uint round = 1; ; ++round) {
	    this.SubBytes();
	    this.ShiftRows();
	    if (round == this.Nr) {
		break;
	    }
	    this.MixColumns();
	    this.AddRoundKey(round);
	}

	// Add round key to last round
	this.AddRoundKey(this.Nr);
    }

    void
    InvCipher() {

	// Add the First round key to the state before starting the rounds.
	this.AddRoundKey(this.Nr);

	// There will be Nr rounds.
	// The first Nr-1 rounds are identical.
	// These Nr rounds are executed in the loop below.
	// Last one without InvMixColumn()
	for (uint round = (this.Nr - 1); ; --round) {
	    this.InvShiftRows();
	    this.InvSubBytes();
	    this.AddRoundKey(round);
	    if (round == 0) {
		break;
	    }
	    this.InvMixColumns();
	}
    }

    // Transfer linear state from buffer into state_t format
    void
    buf_state(in ubyte[] buf) {
	uint idx = 0;

	for (uint i = 0; i < 4; ++i) {
	    for (uint j = 0; j < 4; ++j) {
		this.state[i][j] = buf[idx++];
	    }
	}
    }

    // Transfer state_t back into buf
    void
    state_buf(ubyte[] buf) {
	uint idx = 0;

	for (uint i = 0; i < 4; ++i) {
	    for (uint j = 0; j < 4; ++j) {
		buf[idx++] = this.state[i][j];
	    }
	}
    }

    public:

    // For CBC, let them set our initialization vector
    void
    set_iv(in ubyte[] iv)
    {
	enforce(iv.length == AES_BLOCKLEN, "Wrong size of IV");
	this.Iv[] = iv[];
    }

    void
    ECB_encrypt(ubyte[] buf) {

	// The next function call encrypts the PlainText with the Key using AES algorithm.
	this.buf_state(buf);
	this.Cipher();
	this.state_buf(buf);
    }

    void
    ECB_decrypt(ubyte[] buf) {

	// The next function call decrypts the PlainText with the Key using AES algorithm.
	this.buf_state(buf);
	this.InvCipher();
	this.state_buf(buf);
    }

    // Set up AES for a given strength of encryption
    this(in uint nbit, in ubyte[] key) {

	// Configure for key size.  This includes
	//  expaaneidng RoundKey to the size needed for
	//  our key size
	switch (nbit) {
	case 128:
	    this.Nk = 4;
	    this.Nr = 10;
	    this.keylen = 16;
	    this.RoundKey.length = 176;
	    break;
	case 192:
	    this.Nk = 6;
	    this.Nr = 12;
	    this.keylen = 24;
	    this.RoundKey.length = 208;
	    break;
	case 256:
	    this.Nk = 8;
	    this.Nr = 14;
	    this.keylen = 32;
	    this.RoundKey.length = 240;
	    break;
	default:
	    enforce(false, "Unsupported AES key size");
	}

	this.KeyExpansion(key);
    }

    void
    CBC_encrypt_buffer(ubyte[] buf) {

	auto Iv = this.Iv;
	while (buf.length) {
	    XorWith(buf, Iv);
	    this.buf_state(buf);
	    Cipher();
	    this.state_buf(buf);
	    Iv = buf[0 .. AES_BLOCKLEN];
	    buf = buf[AES_BLOCKLEN .. $];
	}

	// Save latest Iv for next call
	this.Iv = Iv;
    }

    void
    CBC_decrypt_buffer(ubyte[] buf) {
	auto storeNextIv = new ubyte[AES_BLOCKLEN];

	while (buf.length) {
	    storeNextIv[] = buf[0 .. AES_BLOCKLEN];
	    this.buf_state(buf);
	    this.InvCipher();
	    this.state_buf(buf);
	    XorWith(buf, this.Iv);
	    this.Iv[] = storeNextIv[];
	    buf = buf[AES_BLOCKLEN .. $];
	}
    }

    /*
     * Symmetrical operation: same function for encrypting as for decrypting.
     * Note any IV/nonce should never be reused with the same key
     */
    void
    CTR_xcrypt_buffer(ubyte[] buf) {
	auto buffer = new ubyte[AES_BLOCKLEN];

	uint bi = AES_BLOCKLEN;
	for (size_t i = 0; i < buf.length; ++i, ++bi) {
	    /* we need to regen xor complement in buffer */
	    if (bi == AES_BLOCKLEN) {

		this.buf_state(this.Iv);
		Cipher();
		this.state_buf(buffer);

		/* Increment Iv and handle overflow */
		for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) {
		    /* inc will overflow */
		    if (this.Iv[bi] == 255) {
			this.Iv[bi] = 0;
			continue;
		    } 
		    this.Iv[bi] += 1;
		    break;   
		}
		bi = 0;
	    }

	    buf[i] ^= buffer[bi];
	}
    }
}

unittest {
    import tiny.fmt : hexstr;

    // In-place ECB encryption
    const ubyte[] k1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
    auto a1 = new AES(128, k1);
    ubyte[] k2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
    a1.ECB_encrypt(k2);
    auto k3 = hexstr(k2);
    assert(k3 == "66e94bd4ef8a2c3b884cfa59ca342b2e");

    // Initialization vector, CBC mode
    auto a2 = new AES(128, k1);
    a2.set_iv(k1);
    ubyte[] k4 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
    a2.CBC_encrypt_buffer(k4);
    assert(hexstr(k4) == "66e94bd4ef8a2c3b884cfa59ca342b2e");
    ubyte[] k5 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
    a2.CBC_encrypt_buffer(k5);
    assert(hexstr(k5) == "f795bd4a52e29ed713d313fa20e98dbc");
}
version(unittest) {
    void main() {
    }
}